
1

INF 117
Project in Software Engineering

Lecture Notes -Spring Quarter, 2008

Michele Rousseau
Set 7 – Going from Design to Code, Integration Test Plans

Set 7 2

What’s Next

No Lecture

Set 7 3

Announcements

kClient approval should be on or
before the due date
●Don’t wait until the last minute in

case they want changes

kProject Plan should reflect the
details necessary to finish design
and prepare for coding

Set 7 4

Today’s Class

kUML
●Activity Diagrams

●Communication Diagrams

kGoing from Use Cases to Code

kIntegration Testing

Set 7 5

Activity Diagrams
k Describe

● Procedural logic
● Business process
● Workflow

k A flow chart with support for parallel behavior
k Branches and Merges model the conditional

behavior
k Branch: has a single incoming transition

multiple, conditional, outgoing transitions
k Merge: where conditional behavior terminates
Each branch has a corresponding merge
k Represented as a Diamond

Set 7 6

Activity Diagram (2)
kForks and Joins model parallel behavior

kFork: has a single incoming transition and
multiple outgoing transitions (exhibiting
parallel behavior)

kJoin: synchronizes the parallel behavior
●All parallel behaviors complete at the join

kRepresented as a thick line

Each Fork has generally has a corresponding
Join

2

Set 7 7

Activity
Diagram:
Order
Ex.

Set 7 8

Activity
Diagram:
ATM Ex.

Set 7 9

Conditional Thread
There are some exceptions to the each

fork having a corresponding join:

kConditional Thread: A condition on
the thread originating from the fork to
create an exception for the join rule.
●If the condition is false then that

condition is considered to be complete

Set 7 10

Conditional Thread: Example

Set 7 11

Superstates
kWhat if you need to decompose your

activity diagram?

kSuperstates
●You can show the superstate with the

internal behavior inside or

●You can show these in a parent diagram

●You can also use explicit initial and final
states

Adv: you can decouple the parent from the
subsidiary and use it in other contexts Set 7 12

Activity
Diagram:
Superstate

3

Set 7 13

Partitioning an Activity Diagram
Activity diagrams tell you what is happening, but

how do you know who does what?

(in programming – which class is responsible for
each activity)

k Swimlanes: group related activities into one
column (usually organizationally)
● You must arrange your diagram into vertical zones

separated by lines.

● Can be difficult with complex diagrams
◘ In this case use non-linear zones – better than nothing

Set 7 14

Swimlanes

Set 7 15

Atm
Ex.

Set 7 16

When do you use Activity Diagrams?
kModeling parallel behavior
kAnalyzing a use case

●Trying to understand what actions need to
take place

●Determine behavioral dependencies

kUnderstanding workflow
●Documenting the logic of a business process

kDescribing a complicated sequential
algorithm

kDealing with multi-threaded applications

Set 7 17

Not so good for

kTrying to see how objects
collaborate
●Use an interaction diagram for that

kTrying to see how an object
behaves over its lifetime
●Use a state diagram for that

Set 7 18

Communication Diagrams
k Used to be known as Collaboration Diagrams (UML 1.x)

– but modified for 2.0
k Show interactions between run-time elements
k Similar to sequence diagrams, but

● Focus on objects roles & structure
● Sequence diagram is better at visualizing processing over

time

It is an object diagram that shows message passing
relationships

Emphasis on the flow of messages among objects, rather
than timing and ordering of messages

k Sequence Numbers are on arrows rather than vertical
order

4

Set 7 19

Communication Diagrams: Ex

Set 7 20

From Use Cases to Code

Select a
use case

(or scenario)

Perform
Use Case
Analysis

Perform
Use Case

Design
Write Code

Set 7 21

Use Case Analysis
For each use case in an iteration…
1. Create a use case realization

2. Supplement the Use-Case descriptions
k if necessary

3. Find Analysis Classes from Use-Case
Behavior

4. Distribute Behavior to Analysis Classes

Set 7 22

1. Use-Case Realization
A use-case realization is a collection of UML diagrams

which together validate that we have

● the classes Class Diagrams (static relationships)

● responsibilities

● object interactions Interaction Diagrams (dynamic
relationships) – could be Sequence or Collaboration

necessary to provide the behavior in our use case process.

Set 7 23

2. Supplement the Use-Case
descriptions (if necessary)
kBeef up your use-case descriptions
●Can include internal or non-visible

behavior of the system

●Do you need to do this for all of
them?
No! Include just enough detail to
understand the classes you will need

Set 7 24

3. Find Analysis Classes from Use-
Case Behavior &

kidentify a candidate set of analysis classes
kAnalysis Class

●3 Categories
◘Entity Business level

• Banking system Customer, account, transaction
(e-commerce or old school)

◘Controller process & sequence aware
• Control & direct the flow of control on an execution

sequence

◘Boundary I/O required by the s/w system

5

Set 7 25

Describe the Class’s Responsibilities
kUse nouns to determine classes

Knows its status (rented, damaged, dirty,
etc…). Knows the vehicle inventory it is a part
of, or the reservation it is assigned to. Knows
its schedule for availability

Represents a physical vehicle that has
been requested by a customer

Vehicle

Manages its attributes and values as a
cohesive set of properties associated with a
given Customer. Knows the Customer for
which it manages these properties.

Represents a set of properties
describing the rental preferences for
the associated Customer

Customer Profile

Manages the information associated with a
specific customer (e.g. email address,
physical address, phone #, etc.)

Represents the human individual (no
company accounts) who may request to
reserve a vehicle

Customer

ResponsibilitiesDescriptionClass Name

Car Rental Example
Set 7 26

4. Distribute Behavior to Analysis
Class
kSequence Diagrams

kActivity / State Diagrams

Set 7 27

Next
For each resulting analysis class
Describe the Class's Responsibilities

k Describe the Class's Attributes and Associations
●Define Class Attributes
●Establish Associations between Analysis

Classes
●Describe Event Dependencies between

Analysis Classes
k Establish Traceability
k Evaluate the Results of Use-Case Analysis

Set 7 28

Other Notes
kSimplify your diagrams using subsystems

●Packages can be used anywhere

kUse some underlying concepts
●Abstraction
●Encapsulation Information hiding

◘Hide design decisions most likely to change

●Polymorphism
◘Use Operations/functions in different ways

Set 7 29

UML Reminders
kDon’t drive your design by the diagram.

●Drive it by the functionality of the system

kAlways describe the entities of your
diagrams with text

kExplicitly define your interfaces
kOne more time..
kEXPLICITY DEFINE YOUR

INTERFACES
●What does this mean?

The more detailed/accurate the design
The easier it is to code Set 7 30

Integration Testing
kPurpose: to exercise the interfaces

between classes/modules
●Driven by design
●What should it take in?
●What should it supply?
●What happens if they send the wrong

stuff?
kBasic approaches
●Top-Down
●Bottom-up

6

Set 7 31

Integration Testing Approaches
kTop Down & Bottom Up

●Top-down integration testing
◘better at discovering errors in the system

architecture
◘allows a limited demonstration at an early stage

in the development
●Bottom up

◘Often easier to implement

kProblems with both approaches. Extra code
may be required to observe tests

Set 7 32

Top-Down Integration Testing

. . .Level 1 Level 1Testing
Sequence

Level 2 Level 2 Level 2 Level 2

Level 3 Stubs

Level 2 Stubs

Set 7 33

Bottom-Up Testing

Test
Drivers

Level N Level N Level N Level N Level N

Level N-1 Level N-1 Level N-1

Test
Drivers

Testing
Sequence

Set 7 34

Which Approach to use?

k Top-Down or Bottom Up?

k In practice, most integration
involves a combination of these
strategies

